STUDY OF THE RELATION BETWEEN MICROSTRUCTURE AND PROPERTIES (MECHANICAL/ELECTRICAL) OF COPPER WIRE DRAWING AND ANNEALED

ZIDANI Mosbah, MESSAOUDI S., BAUDIN T., DERFOUF C., BOULAGROUN A., MATHON M.H.

University of Biskra, Biskra, Algeria

Abstract
The aim of this study is to clarify the relation between microstructure and properties (hardness and electrical resistivity) of copper wire drawing by the ENICAB Company (Biskra-Algeria) and distended for electrical cabling. In this work we studied the evolution of the microstructure, texture and (mechanical/electrical) properties of the wire drawn and annealed at 260° C [1-4]. The drawing causes anisotropy structural that result in an elongation of grains along the axis of drawing. There was also an increase in electrical resistivity and in hardness following the deformation level increases. After annealing at 260° C of the drawn wire, it was found a gradual return of the mechanical properties and microstructure to a state close to the state of as-received copper. The experimental techniques used in this study are the Scanning Electron Microscope (SEM), the Electron Back Scattered Diffraction (EBSD), the X-ray diffraction, Neutron diffraction and the Vickers microhardness

Keywords: Deformation texture, Copper wire, Microhardness, Electrical resistivity

Author did not supply full text of the paper/poster